17 Fixed Effects

Solutions

This file demonstrates three approaches to estimating “fixed effects” models (remember this is what economists call “fixed effects”, but other disciplines use “fixed effects” to refer to something different). We’re going to use the wbstats package to download country-level data from the World Bank for 2015 - 2018 (the most recently available for the variables I chose). We’ll then estimate models with country fixed effects, with year fixed effects, and with both country and year fixed effects. We’ll estimate each model three ways: using the within transformation, using dummy variables, and using the plm package to apply the within transformation for us. If you don’t know what these are, go through LN5 first.

Note that the model we’ll estimate isn’t a great model in terms of producing interesting, reliable result. This is by design. Part of this chapter is introducing you to another API you can use to get data. You’ve worked with the US Census Bureau’s API to get data on US counties. Now you have experience getting data on countries from the World Bank. You are free to use either source for data for your RP. If the model here was a great one, it might take away something you want to do for your RP. This way you get experience with fixed effects models and with getting data from the World Bank, but don’t waste any potential ideas you might have for your RP. So just don’t read too much into the results. They like suffer from reverse causation and omitted variable bias (both violations of ZCM). If you’re interested in cross-country variation in life expectancy you’ll need to dig much deeper than we’ll go in this chapter.

library(wbstats) # To get data from the World Bank API
library(plm) # To estimate fixed effects models
library(formattable) # to make colorful tables similar to Excel's conditional formatting
library(stargazer)
library(tidyverse)

## Set how many decimals at which R starts to use scientific notation 
options(scipen=3)

# This shows you a lot of what's available from the World Bank API
## listWBinfo <- wb_cachelist

# List of countries in the World Bank data
countryList <- wb_countries()

# List of all available variables (what they call "indicators")
availableIndicators <- wb_cachelist$indicators

## Sometimes it's easier to look through the indicator list if you write it to CSV and open it in Excel (you can do the same thing with the US Census data). The following does that: 
# write.csv(select(availableIndicators,indicator_id, indicator, indicator_desc),"indicators.csv")

## NOTE: if you use any of these (the full list of variables, exporting it to CSV), make sure you do NOT leave that in your final code. It doesn't belong in your RMD file. I just put these thigns in here so you see how to get to this information. 

## We'll use the following variables: 
# SP.DYN.LE00.IN    Life expectancy at birth, total (years)
# NY.GDP.PCAP.KD    GDP per capita (constant 2016 US$)
# SP.POP.TOTL   Population, total
# SP.POP.TOTL.FE.ZS Population, female (% of total population)
# SP.RUR.TOTL.ZS    Rural population (% of total population)


## Create named vector of indicators to download
indicatorsToDownload <- c(
  lifeExp = "SP.DYN.LE00.IN", 
  gdpPerCapita ="NY.GDP.PCAP.KD", 
  pop = "SP.POP.TOTL",
  pctFemale = "SP.POP.TOTL.FE.ZS",
  pctRural = "SP.RUR.TOTL.ZS"
)

## Download descriptions of on World Bank indicators (i.e., variables)
indicatorInfo <- availableIndicators %>% 
                  filter(indicator_id %in% indicatorsToDownload)


## Build description of our variables that we'll output in the HTML body
sDesc <- ""
for(i in 1:nrow(indicatorInfo)){
  sDesc <- paste0(sDesc
                  ,"<b>",
                  indicatorInfo$indicator[i],
                  " (",indicatorInfo$indicator_id[i]
                  , ")</b>: "
                  ,indicatorInfo$indicator_desc[i]
                  ,"<br>")
}

## Download data
mydataOrig <- wb_data(indicatorsToDownload, 
                      start_date = 2015, 
                      end_date = 2018)

## get vector of TRUE and FALSE where FALSE indicates there's one or more NA
noNAs <- complete.cases(mydataOrig)

## When writing this code, I first checked how many rows do have NAs, and then out of how many rows 
# sum(noNAs)
## out of how many rows:
# nrow(noNAs)

## keep rows without any NA
mydata <- mydataOrig[noNAs,]

## get count of rows for each country
countOfYearsByCountry <-  mydata %>% count(country)

## merge the count variable with the data
mydata <- inner_join(mydata,countOfYearsByCountry, by="country")

## keep only countries that have all 4 years complete
mydata <- mydata %>% filter(n==4)

## drop count variable (since all are now 4)
mydata <- mydata %>% select(-n)


## For the purposes of this chapter, lets only examine one group of countries 
## so that we can output results without it taking up hundreds of lines
## If this weren't a BP chapter we wouldn't do this

## Merge in country info (e.g., region)
mydata <- inner_join(mydata,select(countryList,country,region),by="country")

## Keep only region "Latin America & Caribbean" (so we end up with only 31 countries)
mydata <- mydata %>% filter(region == "Latin America & Caribbean") %>% select(-region)

mydata <- mydata %>% rename(year=date)

## Change scale of variables. This re-scales regression coefficients (instead of getting 0.00000123)
####  Measure population in millions of people instead of people
####  Measure GDP per Capita in thousands of 2010 US $ (instead of 2010 US $)
mydata <- mydata %>% mutate(pop=pop/1000000, 
                            gdpPerCapita=gdpPerCapita/1000)
mydata %>% select(lifeExp, gdpPerCapita, pop, pctFemale, pctRural) %>% as.data.frame() %>%
  stargazer(., type = "html",summary.stat = c("n","mean","sd", "min", "p25", "median", "p75", "max"))
Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
lifeExp 136 74.654 3.503 63.237 72.986 74.472 77.016 80.350
gdpPerCapita 136 11.695 8.803 1.404 5.974 8.449 15.592 35.183
pop 136 17.640 40.122 0.037 0.373 4.530 11.365 210.167
pctFemale 136 50.647 1.022 48.782 49.877 50.410 51.056 52.814
pctRural 136 35.285 21.488 4.279 19.471 33.622 48.319 81.485

17.1 Variables

Variable descriptions from the World Bank API. These descriptions do not reflect two changes we made (that are reflected in the table of summary statistics above and in the regression results that follow): population is measured in millions of people and GDP per capita is measured in thousands of 2010 US dollars.

GDP per capita (constant 2010 US$) (NY.GDP.PCAP.KD): GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant 2010 U.S. dollars.
Life expectancy at birth, total (years) (SP.DYN.LE00.IN): Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Population, total (SP.POP.TOTL): Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
Population, female (% of total population) (SP.POP.TOTL.FE.ZS): Female population is the percentage of the population that is female. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
Rural population (% of total population) (SP.RUR.TOTL.ZS): Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population.

Source of data definitions: wbstats package

(Note that this is not how you would describe your variables in a paper, but for the purposes of this assignment, it’s an easy way to get an accurate description of each variable)

17.2 OLS

Our focus is fixed effects models, but often when estimating fixed effects models we also estimate regular OLS without fixed effects for comparison.

ols <- lm(data=mydata,lifeExp~gdpPerCapita+pop+pctFemale+pctRural)

17.3 Country Fixed Effects

Our basic OLS model is the following: \[ lifeExp_{it} = \beta_0+\beta_1 gdpPerCapita_{it} + \beta_2 pop_{it} + \beta_3 pctFemale_{it} + \beta_4 pctRural_{it} + v_{it} \] To save on notation, we’ll use generic variables (and I wrote out the “composite error term”), i.e.,

\[ y_{it} = \beta_0+\beta_1 x_{1it} + \beta_2 x_{2it} + \beta_3 x_{2it} + \beta_4 x_{4it} + (c_i + u_{it}) \]

Below there are 3 equations. The first is for country \(i\) in year \(t\) (the same as the one above). The second equation is the average over the four years for country \(i\), where \(\bar{y}_{i}=\sum_{t=2015}^{2018}y_{it}\) is the average value of \(y_{it}\) over the 4 years for country \(i\), \(\bar{x}_{ji}=\sum_{t=2015}^{2018}x_{jti}\) is the average value of \(x_{jti}\) over the 4 years for country \(i\) for the four explanatory variables \(j\in\{1,2,3,4\}\), \(\bar{c}_{i}=\sum_{t=2015}^{2018}c_{i}=c_i\) is the average value of \(c_{i}\) over the 4 years for country \(i\) (which just equals \(c_i\) because \(c_i\) is the same in all years for country \(i\)), and \(\bar{u}_{i}=\sum_{t=2015}^{2018}u_{it}\) is the average value of \(u_{it}\) over the 4 years for country \(i\). For the final equation, subtract country \(i\)’s average from the value in each year \(t\).

\[ \begin{align} y_{it} &= \beta_0+\beta_1 x_{1it} + \beta_2 x_{2it} + \beta_3 x_{2it} + \beta_4 x_{4it} + (c_i + u_{it}) \\ \bar{y}_{i} &= \beta_0+\beta_1 \bar{x}_{1i} + \beta_2 \bar{x}_{2i} + \beta_3 \bar{x}_{3i} + \beta_4 \bar{x}_{4i} + (\bar{c}_i + \bar{u}_{i}) \\ y_{it}-\bar{y}_{i} &= (\beta_0-\beta_0)+\beta_1 (x_{1it}-\bar{x}_{1i}) + \beta_2 (x_{2it}-\bar{x}_{2i}) + \beta_3 (x_{3it}-\bar{x}_{3i}) \\ &\hspace{6cm} + \beta_4 (x_{4it}-\bar{x}_{4i}) + (c_i-\bar{c}_i + u_{it}-\bar{u}_{i}) \end{align} \]

This final equation simplifies to the “within transformation” for country \(i\), \[ y_{it}-\bar{y}_{i} = \beta_1 (x_{1it}-\bar{x}_{1i}) + \beta_2 (x_{2it}-\bar{x}_{2i}) + \beta_3 (x_{3it}-\bar{x}_{3i}) + \beta_4 (x_{4it}-\bar{x}_{4i}) + (u_{it}-\bar{u}_{i}) \] because \(\beta_0-\beta_0=0\) and \(c_i-\bar{c}_i=0\), where \(\bar{c}_i=c_i\) because \(c_i\) is the same in all years for country \(i\). Mathematically, this is why the fixed effects model allows us to control for unobservable factors that do not change of time (or whatever is measured by \(t=1,,,,.T\)). If \(c_i\) is not constant for all time periods, then \(\bar{c}_i=c_i\) isn’t correct and it doesn’t drop out of the final equation. That means it remains in the equations we estimate, and our coefficients are biased.

At the end of this file there are tables that demonstrate the within transformation for our dataset. There is a table for each variable. Look at the table for Life expectancy. Find the row for Argentina (iso3c code ARG). It’s average value of life expectancy is 76.72. In 2015, their value was 76.76, which is 0.04 below Argentina’s four-year average value of 76.72. In 2016, Argentina’s life expectancy was 76.31, which is 0.41 above Argentina’s four-year average. Below this table for life expectancy is a similar table for each explanatory variable. When economists say a model has country “fixed effects”, they mean estimating an OLS regression using data transformed by this “within” transformation.

Alternatively, a model with country “fixed effects” can be estimated using the original OLS equation with the addition of a dummy variable for each country (omitting one).

\[ y_{it} = \beta_0+\beta_1 x_{1it} + \beta_2 x_{2it} + \beta_3 x_{2it} + \beta_4 x_{4it} + \sum_{i=2}^{50}\sigma_idC_i + (c_i + u_{it}) \]

where \(dC_i\) is a dummy variable with a value of 1 if that observation is country \(i\) and equals 0 otherwise (and \(\sigma_i\) is the coefficient on dummy variable \(dC_i\)).

These two models, the “within transformation” and the model with a dummy variable for each country, are mathematically and empirically equivalent. To see that they are empirically equivalent, we’ll estimate both models and compare the results. Note that the standard errors and \(R^2\) values are not equivalent, as discussed below.

## Dummy variable for each country (it automatically omits one)
countryDummies <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural+factor(country),data=mydata)

## Within transformation (subtract country averages from each observation for each variable)

## Create Country Averages
mydata <- mydata %>%
  group_by(country) %>%
  mutate(cAvg_lifeExp=mean(lifeExp),
         cAvg_gdpPerCapita=mean(gdpPerCapita),
         cAvg_pop=mean(pop),
         cAvg_pctFemale=mean(pctFemale),
         cAvg_pctRural=mean(pctRural)
         ) %>%
  ungroup()

## Within transformation
mydataCountry <- mydata %>%
  mutate(lifeExp=lifeExp-cAvg_lifeExp,
         gdpPerCapita=gdpPerCapita-cAvg_gdpPerCapita,
         pop=pop-cAvg_pop,
         pctFemale=pctFemale-cAvg_pctFemale,
         pctRural=pctRural-cAvg_pctRural
         )  %>%
  ungroup()

## Estimate within transformation using the transformed data
countryWithin <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydataCountry)

## Using plm package
countryPlm <- plm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydata, index=c("country"), model = "within", effect="individual")
stargazer(countryDummies,countryWithin,countryPlm, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 4,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
OLS panel
linear
(1) (2) (3)
gdpPerCapita 0.1131 (0.0600)* 0.1131 (0.0519)** 0.1131 (0.0600)*
pop 0.0598 (0.0503) 0.0598 (0.0435) 0.0598 (0.0503)
pctFemale 0.6970 (0.5382) 0.6970 (0.4655) 0.6970 (0.5382)
pctRural -0.1476 (0.0600)** -0.1476 (0.0519)*** -0.1476 (0.0600)**
factor(country)Argentina -12.4450 (4.1437)***
factor(country)Aruba -6.9573 (1.2192)***
factor(country)Bahamas, The -14.6820 (3.5130)***
factor(country)Barbados -2.3363 (0.4518)***
factor(country)Belize -4.8728 (2.1054)**
factor(country)Bolivia -14.5484 (3.2176)***
factor(country)Brazil -23.1193 (9.7968)**
factor(country)Chile -6.8776 (3.9218)*
factor(country)Colombia -10.4753 (3.6862)***
factor(country)Costa Rica -4.8909 (3.6734)
factor(country)Cuba -6.5904 (3.4765)*
factor(country)Dominican Republic -11.0797 (3.8017)***
factor(country)Ecuador -5.2878 (2.7981)*
factor(country)El Salvador -11.8277 (2.8804)***
factor(country)Grenada -2.4931 (1.6301)
factor(country)Guatemala -7.9023 (2.0302)***
factor(country)Guyana -7.8718 (0.8472)***
factor(country)Haiti -16.5223 (2.2762)***
factor(country)Honduras -7.2340 (2.6626)***
factor(country)Jamaica -8.2572 (2.3559)***
factor(country)Mexico -17.7523 (5.9223)***
factor(country)Nicaragua -7.4429 (2.4331)***
factor(country)Panama -5.1770 (3.0542)*
factor(country)Paraguay -7.5663 (2.8103)***
factor(country)Peru -9.6800 (3.4234)***
factor(country)Puerto Rico -10.4554 (4.0113)**
factor(country)St. Lucia -2.1323 (1.0039)**
factor(country)St. Vincent and the Grenadines -4.5311 (2.7316)
factor(country)Suriname -10.0725 (3.0393)***
factor(country)Trinidad and Tobago -7.2752 (2.0746)***
factor(country)Turks and Caicos Islands -10.5865 (4.6999)**
factor(country)Uruguay -10.7839 (4.2651)**
factor(country)Virgin Islands (U.S.) -11.7226 (4.1648)***
Constant 51.0531 (29.2668)* -0.0000 (0.0186)
Observations 136 136 136
R2 0.9963 0.2153 0.2153
Adjusted R2 0.9949 0.1913 -0.0810
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

We’ve changed a few of the stargazer options for this chapter. We’re displaying standard errors instead of p-values so that we can use only one row per variable (it lets us report coefficient and standard error on one line, but not if we use p-values instead). I modified the note to say that standard errors are reported in parentheses.

Now look at the coefficient estimates. The 3 models all have the same coefficients on gdpPerCapita, pop, pctFemale, and pctRurla. In LN5 we discuss how the within transformation is equivalent to including dummy variables for each group (in this case, countries). That’s exactly what see in the table. The PLM package estimates the within transformation for us.

You also may notice that the standard errors (and statistical significance stars) are different in the middle column. When we estimate the model with dummy variables (column 1), the regular OLS standard errors are correct. But when we apply the within transformation, we need to adjust the standard errors to account for the within transformation. This would be a bit difficult for us to do. Thankfully, the PLM package correctly adjusts the standard errors (and thus p-values) for us. Thus, in practice we won’t actually want to apply the within transformation ourselves. We’re doing it in this chapter so you can see exactly what it is in practice and see that the coefficient estimates for all 3 versions result in the same coefficients.

If you compare the \(R^2\) values across models, you’ll notice that the \(R^2\) for the model with dummy variables is much higher. Including all the dummy variables makes it artificially high. We want to use the \(R^2\) from the within transformation. The PLM model does this for us.

Another reason we want to use the PLM model when we estimate fixed effects models is that we often don’t want to see all of the coefficients on the dummy variables. For country fixed effects, the coefficient on each country dummy is estimated off of only 4 observations. Thus, it is not a reliable estimate of the effect of being Argentina (or Belize, etc). It still allows us to estimate the model with country fixed effects, even if we don’t care about the coefficient estimates themselves. However, if we had not dropped all countries except South America, we would have hundreds of dummy variables. If we were estimating a model using US county data, we would have over 3000. R probably wouldn’t even let us estimate a model with that many variables. This again makes the PLM package preferable.

17.4 Year Fixed Effects

Above you saw how to estimate models with country fixed effects in three different ways. Here, you should estimate models with year fixed effects in the same three ways. Hint: you just have to switch “country” with “year” and everythign else is the same.

## Dummy variable for each year (it automatically omits one)
yearDummies <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural+factor(year),data=mydata)

## Within transformation (subtract year averages from each observation for each variable)

## Create Year Averages
mydata <- mydata %>%
  group_by(year) %>%
  mutate(yrAvg_lifeExp=mean(lifeExp),
         yrAvg_gdpPerCapita=mean(gdpPerCapita),
         yrAvg_pop=mean(pop),
         yrAvg_pctFemale=mean(pctFemale),
         yrAvg_pctRural=mean(pctRural)
         ) %>%
  ungroup()

## Within transformation
mydataYear <- mydata %>%
  mutate(lifeExp=lifeExp-yrAvg_lifeExp,
         gdpPerCapita=gdpPerCapita-yrAvg_gdpPerCapita,
         pop=pop-yrAvg_pop,
         pctFemale=pctFemale-yrAvg_pctFemale,
         pctRural=pctRural-yrAvg_pctRural
         )  %>%
  ungroup()



## Estimate within transformation using the transformed data
yearWithin <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydataYear)

## Using plm package
yearPlm <- plm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydata, index=c("year"), model = "within", effect="individual")
stargazer(yearDummies,yearWithin,yearPlm, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 4,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
OLS panel
linear
(1) (2) (3)
gdpPerCapita 0.2125 (0.0398)*** 0.2125 (0.0394)*** 0.2125 (0.0398)***
pop 0.0033 (0.0069) 0.0033 (0.0069) 0.0033 (0.0069)
pctFemale -0.2282 (0.3154) -0.2282 (0.3118) -0.2282 (0.3154)
pctRural -0.0343 (0.0135)** -0.0343 (0.0133)** -0.0343 (0.0135)**
factor(year)2016 0.0918 (0.6993)
factor(year)2017 0.1802 (0.6994)
factor(year)2018 0.2203 (0.6994)
Constant 84.7549 (15.5578)*** -0.0000 (0.2444)
Observations 136 136 136
R2 0.3578 0.3570 0.3570
Adjusted R2 0.3226 0.3374 0.3219
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.5 Country and Year Fixed Effects

Now that you’ve estimated the models with year fixed effects, estimate models with both country and year fixed effects. It works the same way as above, just doing it for both country and year.

## Dummy variable for each country and each year (it automatically omits one of each)
countryyearDummies <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural+factor(year)+factor(country),data=mydata)

## Within transformation (subtract country AND year averages from each observation for each variable)
## We already created the country averages and year averages above so we don't need to create them again

## Within transformation
mydataCountryYear <- mydata %>%
  mutate(lifeExp=lifeExp-cAvg_lifeExp-yrAvg_lifeExp,
         gdpPerCapita=gdpPerCapita-cAvg_gdpPerCapita-yrAvg_gdpPerCapita,
         pop=pop-cAvg_pop-yrAvg_pop,
         pctFemale=pctFemale-cAvg_pctFemale-yrAvg_pctFemale,
         pctRural=pctRural-cAvg_pctRural-yrAvg_pctRural
         )  %>%
  ungroup()

##Estimate within transformation using the transformed data
countryYearWithin <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydataCountryYear)

##Using plm package
countryYearPlm <- plm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydata, index=c("country","year"), model = "within", effect="twoways")
stargazer(countryyearDummies,countryYearWithin, countryYearPlm, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 4,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
OLS panel
linear
(1) (2) (3)
gdpPerCapita 0.0926 (0.0597) 0.0926 (0.0509)* 0.0926 (0.0597)
pop 0.0140 (0.0524) 0.0140 (0.0446) 0.0140 (0.0524)
pctFemale 0.2558 (0.5550) 0.2558 (0.4726) 0.2558 (0.5550)
pctRural -0.0450 (0.0708) -0.0450 (0.0603) -0.0450 (0.0708)
factor(year)2016 0.0877 (0.0636)
factor(year)2017 0.1715 (0.0749)**
factor(year)2018 0.2247 (0.0889)**
factor(country)Argentina -4.4289 (5.1083)
factor(country)Aruba -4.6134 (1.5027)***
factor(country)Bahamas, The -8.5611 (4.1804)**
factor(country)Barbados -1.7206 (0.5040)***
factor(country)Belize -4.0949 (2.0919)*
factor(country)Bolivia -10.9124 (3.4576)***
factor(country)Brazil -8.1467 (11.1984)
factor(country)Chile -0.5159 (4.5668)
factor(country)Colombia -3.5323 (4.4966)
factor(country)Costa Rica -0.3523 (4.0134)
factor(country)Cuba -1.8233 (3.8771)
factor(country)Dominican Republic -6.3070 (4.1647)
factor(country)Ecuador -1.7799 (3.0648)
factor(country)El Salvador -7.0790 (3.3555)**
factor(country)Grenada -2.5864 (1.6033)
factor(country)Guatemala -5.5944 (2.1831)**
factor(country)Guyana -8.4840 (0.8622)***
factor(country)Haiti -14.2080 (2.4052)***
factor(country)Honduras -5.1260 (2.7409)*
factor(country)Jamaica -6.0970 (2.4589)**
factor(country)Mexico -7.2146 (7.0815)
factor(country)Nicaragua -4.7104 (2.6076)*
factor(country)Panama -1.7303 (3.2873)
factor(country)Paraguay -4.8894 (2.9497)
factor(country)Peru -3.8475 (4.0416)
factor(country)Puerto Rico -2.9235 (4.8889)
factor(country)St. Lucia -3.7614 (1.1615)***
factor(country)St. Vincent and the Grenadines -3.4942 (2.7188)
factor(country)Suriname -6.9784 (3.2165)**
factor(country)Trinidad and Tobago -4.9854 (2.2263)**
factor(country)Turks and Caicos Islands -4.6965 (5.1569)
factor(country)Uruguay -3.6969 (4.9925)
factor(country)Virgin Islands (U.S.) -3.9435 (5.0677)
Constant 66.6238 (29.3962)** -61.9555 (24.0430)**
Observations 136 136 136
R2 0.9966 0.0389 0.0389
Adjusted R2 0.9951 0.0095 -0.3658
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.6 Comparison of all models

Below we have comparisons of the four models: ols, country fixed effects, year fixed effects, and country and year fixed effects. The comparisons are done three times, one for each method of estimating the models.

17.6.1 Within Transformation

stargazer(ols,countryWithin,yearWithin,countryYearWithin, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 3,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
(1) (2) (3) (4)
gdpPerCapita 0.212 (0.039)*** 0.113 (0.052)** 0.212 (0.039)*** 0.093 (0.051)*
pop 0.003 (0.007) 0.060 (0.044) 0.003 (0.007) 0.014 (0.045)
pctFemale -0.227 (0.312) 0.697 (0.466) -0.228 (0.312) 0.256 (0.473)
pctRural -0.034 (0.013)** -0.148 (0.052)*** -0.034 (0.013)** -0.045 (0.060)
Constant 84.800 (15.384)*** -0.000 (0.019) -0.000 (0.244) -61.955 (24.043)**
Observations 136 136 136 136
R2 0.357 0.215 0.357 0.039
Adjusted R2 0.338 0.191 0.337 0.010
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.6.2 PLM Package

stargazer(ols,countryPlm,yearPlm,countryYearPlm, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 3,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
OLS panel
linear
(1) (2) (3) (4)
gdpPerCapita 0.212 (0.039)*** 0.113 (0.060)* 0.212 (0.040)*** 0.093 (0.060)
pop 0.003 (0.007) 0.060 (0.050) 0.003 (0.007) 0.014 (0.052)
pctFemale -0.227 (0.312) 0.697 (0.538) -0.228 (0.315) 0.256 (0.555)
pctRural -0.034 (0.013)** -0.148 (0.060)** -0.034 (0.013)** -0.045 (0.071)
Constant 84.800 (15.384)***
Observations 136 136 136 136
R2 0.357 0.215 0.357 0.039
Adjusted R2 0.338 -0.081 0.322 -0.366
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.6.3 Dummy Variables

stargazer(ols,countryDummies,yearDummies,countryyearDummies, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 3,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
(1) (2) (3) (4)
gdpPerCapita 0.212 (0.039)*** 0.113 (0.060)* 0.212 (0.040)*** 0.093 (0.060)
pop 0.003 (0.007) 0.060 (0.050) 0.003 (0.007) 0.014 (0.052)
pctFemale -0.227 (0.312) 0.697 (0.538) -0.228 (0.315) 0.256 (0.555)
pctRural -0.034 (0.013)** -0.148 (0.060)** -0.034 (0.013)** -0.045 (0.071)
factor(country)Argentina -12.445 (4.144)*** -4.429 (5.108)
factor(country)Aruba -6.957 (1.219)*** -4.613 (1.503)***
factor(country)Bahamas, The -14.682 (3.513)*** -8.561 (4.180)**
factor(country)Barbados -2.336 (0.452)*** -1.721 (0.504)***
factor(country)Belize -4.873 (2.105)** -4.095 (2.092)*
factor(country)Bolivia -14.548 (3.218)*** -10.912 (3.458)***
factor(country)Brazil -23.119 (9.797)** -8.147 (11.198)
factor(country)Chile -6.878 (3.922)* -0.516 (4.567)
factor(country)Colombia -10.475 (3.686)*** -3.532 (4.497)
factor(country)Costa Rica -4.891 (3.673) -0.352 (4.013)
factor(country)Cuba -6.590 (3.476)* -1.823 (3.877)
factor(country)Dominican Republic -11.080 (3.802)*** -6.307 (4.165)
factor(country)Ecuador -5.288 (2.798)* -1.780 (3.065)
factor(country)El Salvador -11.828 (2.880)*** -7.079 (3.356)**
factor(country)Grenada -2.493 (1.630) -2.586 (1.603)
factor(country)Guatemala -7.902 (2.030)*** -5.594 (2.183)**
factor(country)Guyana -7.872 (0.847)*** -8.484 (0.862)***
factor(country)Haiti -16.522 (2.276)*** -14.208 (2.405)***
factor(country)Honduras -7.234 (2.663)*** -5.126 (2.741)*
factor(country)Jamaica -8.257 (2.356)*** -6.097 (2.459)**
factor(country)Mexico -17.752 (5.922)*** -7.215 (7.082)
factor(country)Nicaragua -7.443 (2.433)*** -4.710 (2.608)*
factor(country)Panama -5.177 (3.054)* -1.730 (3.287)
factor(country)Paraguay -7.566 (2.810)*** -4.889 (2.950)
factor(country)Peru -9.680 (3.423)*** -3.848 (4.042)
factor(country)Puerto Rico -10.455 (4.011)** -2.924 (4.889)
factor(country)St. Lucia -2.132 (1.004)** -3.761 (1.161)***
factor(country)St. Vincent and the Grenadines -4.531 (2.732) -3.494 (2.719)
factor(country)Suriname -10.072 (3.039)*** -6.978 (3.216)**
factor(country)Trinidad and Tobago -7.275 (2.075)*** -4.985 (2.226)**
factor(country)Turks and Caicos Islands -10.586 (4.700)** -4.697 (5.157)
factor(country)Uruguay -10.784 (4.265)** -3.697 (4.993)
factor(country)Virgin Islands (U.S.) -11.723 (4.165)*** -3.944 (5.068)
factor(year)2016 0.092 (0.699) 0.088 (0.064)
factor(year)2017 0.180 (0.699) 0.171 (0.075)**
factor(year)2018 0.220 (0.699) 0.225 (0.089)**
Constant 84.800 (15.384)*** 51.053 (29.267)* 84.755 (15.558)*** 66.624 (29.396)**
Observations 136 136 136 136
R2 0.357 0.996 0.358 0.997
Adjusted R2 0.338 0.995 0.323 0.995
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.7 Data Summary by Country

stargazer(as.data.frame(mydata) , type = "html",digits = 2 ,summary.stat = c("n","mean","sd", "min", "median", "max"))
Statistic N Mean St. Dev. Min Median Max
year 136 2,016.50 1.12 2,015 2,016.5 2,018
gdpPerCapita 136 11.70 8.80 1.40 8.45 35.18
lifeExp 136 74.65 3.50 63.24 74.47 80.35
pop 136 17.64 40.12 0.04 4.53 210.17
pctFemale 136 50.65 1.02 48.78 50.41 52.81
pctRural 136 35.28 21.49 4.28 33.62 81.48
cAvg_lifeExp 136 74.65 3.49 63.63 74.49 80.08
cAvg_gdpPerCapita 136 11.70 8.79 1.42 8.59 34.56
cAvg_pop 136 17.64 40.12 0.04 4.51 207.68
cAvg_pctFemale 136 50.65 1.02 48.81 50.41 52.69
cAvg_pctRural 136 35.28 21.48 4.46 33.38 81.41
yrAvg_lifeExp 136 74.65 0.12 74.49 74.66 74.80
yrAvg_gdpPerCapita 136 11.70 0.13 11.54 11.67 11.89
yrAvg_pop 136 17.64 0.21 17.37 17.64 17.92
yrAvg_pctFemale 136 50.65 0.02 50.62 50.65 50.67
yrAvg_pctRural 136 35.28 0.28 34.91 35.29 35.66

17.7.1 Average Values for Each Country

country Avg
lifeExp
Avg
gdpPerCapita
Avg
pop
Avg
pctFemale
Avg
pctRural
Antigua and Barbuda 78.21 15.84 0.09 52.32 75.21
Argentina 76.72 13.46 43.82 50.51 8.31
Aruba 75.82 29.81 0.11 52.69 56.75
Bahamas, The 73.52 30.25 0.40 51.98 17.12
Barbados 76.87 17.26 0.28 52.14 68.81
Belize 73.46 5.93 0.37 49.68 54.44
Bolivia 67.60 3.10 11.35 49.72 31.09
Brazil 74.68 8.56 207.68 50.80 13.83
Chile 80.08 13.68 18.26 50.38 12.54
Colombia 76.53 6.28 48.09 50.62 19.73
Costa Rica 79.35 12.04 4.97 49.87 21.88
Cuba 77.61 7.83 11.34 50.20 23.04
Dominican Republic 73.06 7.35 10.59 49.64 20.16
Ecuador 76.90 6.02 16.59 49.99 36.39
El Salvador 72.18 3.88 6.26 52.28 29.13
Grenada 74.84 8.80 0.12 49.79 63.87
Guatemala 72.43 4.07 15.96 50.47 49.49
Guyana 68.54 5.92 0.77 50.92 73.48
Haiti 63.63 1.42 10.79 50.36 46.14
Honduras 72.65 2.34 9.54 49.45 43.87
Jamaica 72.03 5.16 2.80 50.34 44.75
Mexico 74.31 9.94 122.13 51.05 20.28
Nicaragua 73.41 2.08 6.44 50.72 41.80
Panama 77.69 14.33 4.06 49.93 32.80
Paraguay 73.48 6.11 6.31 49.73 38.83
Peru 75.82 6.36 31.41 50.44 22.37
Puerto Rico 79.75 29.81 3.35 52.41 6.40
St. Lucia 73.18 10.77 0.18 50.29 81.41
St. Vincent and the Grenadines 74.28 7.79 0.11 48.81 48.42
Suriname 71.84 8.62 0.58 50.02 33.95
Trinidad and Tobago 74.20 16.82 1.48 50.70 46.76
Turks and Caicos Islands 76.73 25.50 0.04 49.45 7.34
Uruguay 77.57 15.94 3.42 51.66 4.81
Virgin Islands (U.S.) 79.27 34.56 0.11 52.63 4.46

17.7.2 Variable-Specific Values and Within Transformation for Each Country

For each variable, display each country’s values in 2015, 2016, 2017, and 2018, followed by the country’s average. These 5 columns are shaded from red (lowest) to green (highest) for each country. Then, in the final 4 columns display the within transformation (i.e., subtract the country’s average from each year’s value). These last 4 columns are also shaded for each country.

17.7.3 Life expectancy

iso3c 2015
Life Exp
2016
Life Exp
2017
Life Exp
2018
Life Exp
Avg
Life Exp
2015
Within
2016
Within
2017
Within
2018
Within
ABW 75.68 75.62 75.90 76.07 75.82 -0.14 -0.20 0.08 0.25
ARG 76.76 76.31 76.83 77.00 76.72 0.04 -0.42 0.11 0.27
ATG 77.91 78.15 78.27 78.51 78.21 -0.30 -0.06 0.06 0.30
BHS 73.10 73.54 73.63 73.81 73.52 -0.42 0.02 0.11 0.29
BLZ 73.19 73.40 73.56 73.70 73.46 -0.28 -0.06 0.10 0.24
BOL 67.32 67.63 67.70 67.75 67.60 -0.28 0.03 0.10 0.15
BRA 74.33 74.44 74.83 75.11 74.68 -0.35 -0.24 0.15 0.43
BRB 76.65 76.82 76.94 77.07 76.87 -0.22 -0.05 0.07 0.20
CHL 79.75 80.08 80.35 80.13 80.08 -0.33 0.00 0.27 0.06
COL 76.26 76.47 76.65 76.75 76.53 -0.27 -0.06 0.12 0.22
CRI 79.09 79.46 79.38 79.48 79.35 -0.27 0.11 0.03 0.13
CUB 77.77 77.64 77.53 77.50 77.61 0.16 0.03 -0.08 -0.11
DOM 72.95 72.99 73.06 73.23 73.06 -0.11 -0.07 0.00 0.17
ECU 76.79 76.76 76.97 77.09 76.90 -0.12 -0.14 0.07 0.19
GRD 75.01 74.76 74.76 74.81 74.84 0.18 -0.08 -0.07 -0.03
GTM 72.10 72.36 72.55 72.73 72.43 -0.33 -0.08 0.12 0.29
GUY 68.20 68.38 68.67 68.90 68.54 -0.34 -0.15 0.13 0.36
HND 72.49 72.59 72.69 72.81 72.65 -0.16 -0.06 0.05 0.17
HTI 63.24 63.39 63.85 64.02 63.63 -0.39 -0.23 0.23 0.39
JAM 72.39 72.02 71.91 71.79 72.03 0.36 -0.01 -0.12 -0.24
LCA 73.14 73.11 73.13 73.36 73.18 -0.05 -0.07 -0.06 0.17
MEX 74.68 74.41 74.14 74.02 74.31 0.37 0.10 -0.17 -0.30
NIC 72.98 73.26 73.55 73.85 73.41 -0.43 -0.15 0.14 0.44
PAN 77.47 77.65 77.80 77.86 77.69 -0.23 -0.04 0.10 0.17
PER 75.62 75.79 75.88 76.01 75.82 -0.20 -0.04 0.05 0.18
PRI 79.69 80.27 79.26 79.77 79.75 -0.05 0.52 -0.49 0.02
PRY 73.19 73.53 73.64 73.57 73.48 -0.29 0.05 0.16 0.08
SLV 71.81 72.03 72.31 72.56 72.18 -0.36 -0.15 0.13 0.38
SUR 70.80 71.59 72.42 72.55 71.84 -1.04 -0.25 0.58 0.71
TCA 76.91 76.86 76.70 76.44 76.73 0.18 0.13 -0.03 -0.29
TTO 74.50 74.28 74.23 73.80 74.20 0.30 0.08 0.03 -0.40
URY 77.48 77.57 77.62 77.61 77.57 -0.09 0.00 0.05 0.04
VCT 74.41 74.28 74.31 74.13 74.28 0.13 0.00 0.03 -0.15
VIR 79.02 79.17 79.37 79.52 79.27 -0.25 -0.10 0.10 0.25

17.7.4 GDP per capita

iso3c 2015
GDP per Capita
2016
GDP per Capita
2017
GDP per Capita
2018
GDP per Capita
Avg
GDP per Capita
2015
Within
2016
Within
2017
Within
2018
Within
ABW 28421.39 28852.24 30270.94 31705.28 29812.46 -1.39 -0.96 0.46 1.89
ARG 13789.06 13360.21 13595.04 13105.40 13462.43 0.33 -0.10 0.13 -0.36
ATG 14861.88 15570.90 15962.68 16967.09 15840.64 -0.98 -0.27 0.12 1.13
BHS 30206.24 29699.19 30371.58 30705.60 30245.65 -0.04 -0.55 0.13 0.46
BLZ 6142.48 6024.84 5806.07 5756.85 5932.56 0.21 0.09 -0.13 -0.18
BOL 2975.65 3054.89 3135.03 3219.20 3096.19 -0.12 -0.04 0.04 0.12
BRA 8783.23 8426.85 8470.95 8553.88 8558.73 0.22 -0.13 -0.09 0.00
BRB 16990.22 17385.20 17430.87 17220.93 17256.81 -0.27 0.13 0.17 -0.04
CHL 13569.95 13644.62 13615.52 13906.77 13684.22 -0.11 -0.04 -0.07 0.22
COL 6228.43 6290.85 6280.66 6320.76 6280.18 -0.05 0.01 0.00 0.04
CRI 11529.95 11893.32 12267.16 12470.96 12040.35 -0.51 -0.15 0.23 0.43
CUB 7683.76 7721.79 7865.37 8048.02 7829.73 -0.15 -0.11 0.04 0.22
DOM 6838.94 7209.99 7461.65 7894.96 7351.38 -0.51 -0.14 0.11 0.54
ECU 6130.59 5965.64 6012.80 5976.25 6021.32 0.11 -0.06 -0.01 -0.05
GRD 8379.62 8621.62 8933.23 9252.68 8796.79 -0.42 -0.18 0.14 0.46
GTM 3994.64 4034.16 4091.27 4163.48 4070.89 -0.08 -0.04 0.02 0.09
GUY 5668.43 5852.84 6038.27 6127.71 5921.81 -0.25 -0.07 0.12 0.21
HND 2257.22 2303.88 2373.79 2423.27 2339.54 -0.08 -0.04 0.03 0.08
HTI 1404.16 1409.58 1425.05 1429.23 1417.00 -0.01 -0.01 0.01 0.01
JAM 5077.55 5132.23 5172.92 5264.20 5161.72 -0.08 -0.03 0.01 0.10
LCA 10290.38 10628.77 10942.25 11211.60 10768.25 -0.48 -0.14 0.17 0.44
MEX 9753.38 9897.15 9997.69 10120.36 9942.15 -0.19 -0.04 0.06 0.18
NIC 2025.32 2087.71 2153.61 2052.13 2079.69 -0.05 0.01 0.07 -0.03
PAN 13669.56 14099.94 14634.84 14922.13 14331.62 -0.66 -0.23 0.30 0.59
PER 6180.19 6337.66 6400.12 6530.50 6362.12 -0.18 -0.02 0.04 0.17
PRI 29763.49 29961.75 29809.22 29687.21 29805.42 -0.04 0.16 0.00 -0.12
PRY 5861.40 6025.10 6226.69 6338.51 6112.92 -0.25 -0.09 0.11 0.23
SLV 3761.51 3845.02 3921.32 4009.72 3884.39 -0.12 -0.04 0.04 0.13
SUR 8907.75 8382.79 8425.68 8750.92 8616.78 0.29 -0.23 -0.19 0.13
TCA 25783.29 26417.96 24726.95 25080.16 25502.09 0.28 0.92 -0.78 -0.42
TTO 18389.53 17038.78 16134.89 15716.91 16820.03 1.57 0.22 -0.69 -1.10
URY 15655.94 15869.43 16088.00 16142.05 15938.86 -0.28 -0.07 0.15 0.20
VCT 7386.74 7730.94 7890.82 8152.38 7790.22 -0.40 -0.06 0.10 0.36
VIR 34007.35 34614.75 34435.49 35183.24 34560.21 -0.55 0.05 -0.12 0.62

17.7.5 Population

iso3c 2015
Population
2016
Population
2017
Population
2018
Population
Avg
Population
2015
Within
2016
Within
2017
Within
2018
Within
ABW 104257 104874 105439 105962 105133.00 0.00 0.00 0.00 0.00
ARG 43131966 43590368 44044811 44494502 43815411.75 -0.68 -0.23 0.23 0.68
ATG 89941 90564 91119 91626 90812.50 0.00 0.00 0.00 0.00
BHS 392697 395976 399020 401906 397399.75 0.00 0.00 0.00 0.00
BLZ 359871 367313 374693 382066 370985.75 -0.01 0.00 0.00 0.01
BOL 11090085 11263015 11435533 11606905 11348884.50 -0.26 -0.09 0.09 0.26
BRA 205188205 206859578 208504960 210166592 207679833.75 -2.49 -0.82 0.83 2.49
BRB 278083 278649 279187 279688 278901.75 0.00 0.00 0.00 0.00
CHL 17870124 18083879 18368577 18701450 18256007.50 -0.39 -0.17 0.11 0.45
COL 47119728 47625955 48351671 49276961 48093578.75 -0.97 -0.47 0.26 1.18
CRI 4895242 4945205 4993842 5040734 4968755.75 -0.07 -0.02 0.03 0.07
CUB 11339894 11342012 11336405 11328244 11336638.75 0.00 0.01 0.00 -0.01
DOM 10405832 10527592 10647244 10765531 10586549.75 -0.18 -0.06 0.06 0.18
ECU 16195902 16439585 16696944 17015672 16587025.75 -0.39 -0.15 0.11 0.43
GRD 118980 119966 120921 121838 120426.25 0.00 0.00 0.00 0.00
GTM 15567419 15827690 16087418 16346950 15957369.25 -0.39 -0.13 0.13 0.39
GUY 755031 759087 763252 785514 765721.00 -0.01 -0.01 0.00 0.02
HND 9294505 9460798 9626842 9792850 9543748.75 -0.25 -0.08 0.08 0.25
HTI 10563757 10713849 10863543 11012421 10788392.50 -0.22 -0.07 0.08 0.22
JAM 2794445 2802695 2808376 2811835 2804337.75 -0.01 0.00 0.00 0.01
LCA 175623 176413 177163 177888 176771.75 0.00 0.00 0.00 0.00
MEX 120149897 121519221 122839258 124013861 122130559.25 -1.98 -0.61 0.71 1.88
NIC 6298598 6389235 6480532 6572233 6435149.50 -0.14 -0.05 0.05 0.14
PAN 3957099 4026336 4096063 4165255 4061188.25 -0.10 -0.03 0.03 0.10
PER 30711863 31132779 31605486 32203944 31413518.00 -0.70 -0.28 0.19 0.79
PRI 3473232 3406672 3325286 3193354 3349636.00 0.12 0.06 -0.02 -0.16
PRY 6177950 6266615 6355404 6443328 6310824.25 -0.13 -0.04 0.04 0.13
SLV 6231066 6250510 6266654 6276342 6256143.00 -0.03 -0.01 0.01 0.02
SUR 575475 581453 587559 593715 584550.50 -0.01 0.00 0.00 0.01
TCA 36538 38246 39844 41487 39028.75 0.00 0.00 0.00 0.00
TTO 1460177 1469330 1478607 1504709 1478205.75 -0.02 -0.01 0.00 0.03
URY 3402818 3413766 3422200 3427042 3416456.50 -0.01 0.00 0.01 0.01
VCT 106482 105963 105549 105281 105818.75 0.00 0.00 0.00 0.00
VIR 107712 107516 107281 107001 107377.50 0.00 0.00 0.00 0.00

17.7.6 Percent female

iso3c 2015
%Female
2016
%Female
2017
%Female
2018
%Female
Avg
%Female
2015
Within
2016
Within
2017
Within
2018
Within
ABW 52.59 52.66 52.72 52.79 52.69 -0.10 -0.03 0.03 0.10
ARG 50.52 50.51 50.50 50.49 50.51 0.01 0.00 -0.01 -0.01
ATG 52.35 52.33 52.30 52.29 52.32 0.04 0.01 -0.01 -0.03
BHS 51.91 51.96 52.01 52.06 51.98 -0.08 -0.03 0.02 0.08
BLZ 49.71 49.69 49.67 49.65 49.68 0.03 0.01 -0.01 -0.03
BOL 49.70 49.71 49.73 49.75 49.72 -0.03 -0.01 0.01 0.03
BRA 50.77 50.79 50.81 50.82 50.80 -0.03 -0.01 0.01 0.02
BRB 52.17 52.15 52.13 52.11 52.14 0.03 0.01 -0.01 -0.03
CHL 50.39 50.39 50.38 50.37 50.38 0.01 0.01 0.00 -0.01
COL 50.61 50.62 50.62 50.62 50.62 -0.01 0.00 0.00 0.00
CRI 49.85 49.86 49.88 49.90 49.87 -0.03 -0.01 0.01 0.03
CUB 50.16 50.18 50.21 50.24 50.20 -0.04 -0.02 0.01 0.04
DOM 49.60 49.63 49.65 49.68 49.64 -0.04 -0.01 0.01 0.04
ECU 49.99 49.99 49.99 49.99 49.99 0.00 0.00 0.00 0.00
GRD 49.72 49.77 49.82 49.86 49.79 -0.07 -0.02 0.02 0.07
GTM 50.46 50.47 50.47 50.47 50.47 0.00 0.00 0.00 0.00
GUY 50.78 50.94 51.09 50.86 50.92 -0.14 0.02 0.18 -0.06
HND 49.44 49.45 49.46 49.46 49.45 -0.01 0.00 0.00 0.01
HTI 50.34 50.35 50.37 50.39 50.36 -0.02 -0.01 0.01 0.02
JAM 50.34 50.34 50.34 50.35 50.34 0.00 -0.01 0.00 0.01
LCA 50.23 50.27 50.31 50.35 50.29 -0.06 -0.02 0.02 0.06
MEX 51.04 51.05 51.05 51.07 51.05 -0.01 -0.01 0.00 0.01
NIC 50.73 50.72 50.72 50.72 50.72 0.00 0.00 0.00 0.00
PAN 49.92 49.92 49.93 49.94 49.93 -0.01 0.00 0.00 0.01
PER 50.46 50.44 50.43 50.43 50.44 0.01 0.00 -0.01 -0.01
PRI 52.31 52.37 52.44 52.51 52.41 -0.10 -0.04 0.03 0.11
PRY 49.71 49.73 49.74 49.75 49.73 -0.02 -0.01 0.01 0.02
SLV 52.24 52.26 52.29 52.32 52.28 -0.04 -0.02 0.01 0.05
SUR 49.96 49.99 50.04 50.09 50.02 -0.06 -0.03 0.02 0.07
TCA 49.39 49.43 49.46 49.50 49.45 -0.06 -0.01 0.02 0.05
TTO 50.72 50.74 50.76 50.59 50.70 0.02 0.04 0.06 -0.11
URY 51.70 51.67 51.65 51.63 51.66 0.04 0.01 -0.01 -0.04
VCT 48.78 48.79 48.81 48.85 48.81 -0.03 -0.01 0.01 0.04
VIR 52.46 52.57 52.69 52.81 52.63 -0.17 -0.07 0.05 0.18

17.7.7 Percent rural

iso3c 2015
%Rural
2016
%Rural
2017
%Rural
2018
%Rural
Avg
%Rural
2015
Within
2016
Within
2017
Within
2018
Within
ABW 56.89 56.81 56.71 56.59 56.75 0.14 0.06 -0.04 -0.16
ARG 8.50 8.37 8.25 8.13 8.31 0.18 0.06 -0.06 -0.18
ATG 75.00 75.15 75.29 75.40 75.21 -0.21 -0.06 0.08 0.19
BHS 17.25 17.17 17.08 16.98 17.12 0.14 0.05 -0.04 -0.14
BLZ 54.59 54.51 54.40 54.28 54.44 0.15 0.06 -0.04 -0.17
BOL 31.61 31.26 30.92 30.58 31.09 0.52 0.17 -0.17 -0.52
BRA 14.23 13.96 13.69 13.43 13.83 0.40 0.13 -0.14 -0.40
BRB 68.75 68.81 68.84 68.85 68.81 -0.06 -0.01 0.03 0.04
CHL 12.64 12.58 12.51 12.44 12.54 0.10 0.04 -0.03 -0.11
COL 20.24 19.89 19.55 19.22 19.73 0.51 0.17 -0.17 -0.50
CRI 23.14 22.26 21.44 20.66 21.88 1.26 0.39 -0.44 -1.22
CUB 23.10 23.07 23.02 22.96 23.04 0.06 0.03 -0.02 -0.08
DOM 21.43 20.56 19.72 18.93 20.16 1.27 0.40 -0.44 -1.24
ECU 36.60 36.47 36.33 36.18 36.39 0.21 0.07 -0.06 -0.22
GRD 64.00 63.93 63.84 63.73 63.87 0.13 0.05 -0.04 -0.15
GTM 50.03 49.68 49.32 48.95 49.49 0.54 0.19 -0.17 -0.55
GUY 73.56 73.52 73.46 73.39 73.48 0.08 0.03 -0.02 -0.09
HND 44.84 44.19 43.54 42.90 43.87 0.97 0.32 -0.32 -0.96
HTI 47.57 46.60 45.65 44.72 46.14 1.43 0.47 -0.48 -1.42
JAM 45.17 44.90 44.62 44.33 44.75 0.41 0.15 -0.13 -0.43
LCA 81.48 81.44 81.39 81.32 81.41 0.08 0.03 -0.02 -0.09
MEX 20.72 20.42 20.13 19.84 20.28 0.44 0.14 -0.15 -0.43
NIC 42.10 41.91 41.70 41.48 41.80 0.31 0.11 -0.10 -0.32
PAN 33.30 32.97 32.63 32.29 32.80 0.50 0.17 -0.17 -0.51
PER 22.64 22.46 22.28 22.09 22.37 0.27 0.09 -0.09 -0.28
PRI 6.38 6.40 6.41 6.42 6.40 -0.03 0.00 0.01 0.02
PRY 39.25 38.97 38.70 38.42 38.83 0.42 0.14 -0.13 -0.42
SLV 30.30 29.50 28.73 27.98 29.13 1.17 0.37 -0.40 -1.15
SUR 33.94 33.96 33.96 33.94 33.95 -0.01 0.01 0.01 -0.01
TCA 7.81 7.48 7.18 6.90 7.34 0.46 0.14 -0.16 -0.44
TTO 46.68 46.75 46.80 46.82 46.76 -0.08 -0.01 0.03 0.06
URY 4.96 4.86 4.76 4.67 4.81 0.15 0.05 -0.05 -0.14
VCT 49.04 48.63 48.22 47.80 48.42 0.62 0.21 -0.20 -0.62
VIR 4.65 4.52 4.40 4.28 4.46 0.19 0.06 -0.06 -0.18

17.8 Bookdown Style Note

To get the above tables to display in bookdown I added HTML code to allow the maximum width to be larger than the default setting. If you find this messes with the rest of your book, you can remove from here to the bottom of this file instide the HTML “style” tag.