4.2 Category 2 Variable 2: Asian Adults
[Map]
<- paste0("<b>",countyGIS_map$name," (",countyGIS_map$FIPS,")</b>",
popupLabels_AsianAge "<br><font color='",countyGIS_map$FontColorWinner,"'>",countyGIS_map$winner,
": ",
format(countyGIS_map$pctWinner*100,digits=4, trim=TRUE),
"%</font>",
"<br>Total votes: ", format(countyGIS_map$totalVotes,big.mark=",", trim=TRUE),
"<br>Percent Asian Age: ", format(round(countyGIS_map$pct_asianage, 2),big.mark=",", trim=TRUE),
"%</font>"
%>%
) lapply(htmltools::HTML)
<- colorNumeric(
pal palette = colorRampPalette(c('Orange', 'White'))(length(countyGIS_map$pct_asianage)),
domain = countyGIS_map$pct_asianage, reverse=TRUE)
leaflet(countyGIS_map, options = leafletOptions(crsClass = "L.CRS.EPSG3857"), width="100%") %>%
addPolygons(weight = 0.5, color = "gray", opacity = 0.7,
fillColor = ~pal(pct_asianage), fillOpacity = 1, smoothFactor = 0.5,
label = popupLabels_AsianAge,
labelOptions = labelOptions(direction = "auto")) %>%
addPolygons(data = stateGIS,fill = FALSE,color="black",weight = 1) %>%
addLegend(pal = pal,values = ~countyGIS_map$pct_asianage, opacity = 0.7, title = "% Asian Age",position = "bottomright")
[Scatter plot]
<- ggplot(countyGIS_stat, aes(pct_asianage, pctGOP)) +
pct_asianage_vs_pctGOP geom_point(aes(alpha = pct_asianage, shape = ".")) +
geom_smooth(method = "lm", se = FALSE)
pct_asianage_vs_pctGOP
[Regression]
# Estimate regression model
<- lm(pctGOP ~ pct_asianage, data=countyGIS_stat)
pct_asianage_reg
# Display model results
pander(summary(pct_asianage_reg))
Estimate | Std. Error | t value | Pr(>|t|) | |
---|---|---|---|---|
(Intercept) | 0.7003 | 0.002909 | 240.7 | 0 |
pct_asianage | -0.03468 | 0.001241 | -27.93 | 3.079e-153 |
Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
---|---|---|---|
3083 | 0.1441 | 0.2021 | 0.2018 |